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Abstract. A phase-space approach to finite-dimensional systems is developed from basic
principles. For a system describable by a Hilbert space of dimensiore define a one-

to-one correspondence between operators and functions on a discrete and finite phase space
with d2 points valid for any dimensiod. The properties fulfilled by this correspondence and

its uniqueness are examined. This formalism is applied to the number difference and phase
difference of a two-mode field. This case is compared with the marginal distribution for these
variables arising from a two-mode Wigner function for number and phase.

1. Introduction

Soon after the beginning of quantum mechanics there appeared its first phase-space
formulation, the Wigner—Weyl formalism or Wigner function [1], fully equivalent to standard
Hilbert space quantum mechanics. States and observables are replaced by functions on
the classical phase space and expected values are computed, as in classical statistical
physics, by averaging over the phase space. This formalism, like other generalizations
[2], applies to systems describable by Cartesian conjugate variables, such as position and
linear momentum, which are unbounded continuous degrees of freedom. This covers a great
variety of situations including, for example, field modes where quadratures play the role of
position and momentum [2].

Since then, this formalism has been translated to other different situations. However,
phase-space formalisms based on conjugate variables other than Cartesian ones (or their
linear combinations) are not straightforward from the original formulation and must be
reconstructed from first principles. This is the case of Wigner functions involving variables
such as action and phase [3, 4] or angle and angular momentum [5, 6].

Here we will focus on a Wigner—-Weyl formalism for systems described by finite-
dimensional Hilbert spaces [6-9]. Among them, spin systems are a proper example although
it can be applied to other situations [6]. As occurs for Cartesian variables [2], there are also
other phase-space methods for finite-dimensional systems as can be seen in [10].

A first and necessary ingredient is a suitable definition of phase space. At this stage
two main possibilities emerge. We can use a bounded and continuous space (the sphere,
for example [7]) or a discrete and finite set of points [6, 8,9]. There is also the possibility
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of discreteness for one variable and continuity for the other. Their difference is a matter of
the properties attached to the correspondence between operators and functions.

Here we will follow the possibility of a discrete and finite phase space. For a system
described by a Hilbert space of dimensibnve will consider a set of?> points as its phase
space. This phase space will be formed by the spectrum of two conjugate variables. A
Wigner—Weyl formalism based directly on a phase space wAtipoints is known in the
case of odd dimensiod. For even dimension, previous approaches resort to decompose
the space into spaces of odd dimension according to the prime factorizatibfihf On
the other hand, there are formalisms valid simultaneously for even and odd dimension, but
based on an enlarged phase space containing morethaeints [6, 9].

We will construct the most general correspondence between operators and functions
delimiting it by imposing desirable properties. These properties are briefly listed in the
appendix. This procedure has the advantage that besides leading us to the solution we are
looking for (in the case when it exists) it also gives simultaneously whether it is unique or
not in addition to a set of compatible properties. Previous solutions fordoddl emerge
and their uniqueness and properties will be examined.

For the sake of illustration the system is assumed to be describing a spin. This choice is
merely a matter of convenience and the solution is valid for every finite-dimensional system
after properly renaming the variables involved. As a further example, in section 3 we will
consider a phase-space description of humber and phase difference for a two-mode field.
This is possible because these are variables are compatible with the total photon number
and all subspaces with given total photon number have finite dimension.

This example offers an interesting possibility. Since there are phase-space formalisms
in terms of number and phase for a one-mode field [3, 4], a phase-space description for
number and phase difference can be derived form a two-mode Wigner function by the
corresponding marginal. This provides a different procedure for the definition of a Wigner—
Weyl correspondence for finite-dimensional systems which will be examined in section 4.

2. Discrete Wigner function

The Wigner function, or Wigner—Weyl correspondence, is a rule associating linear operators
A acting on the Hilbert space of the system with functid?s on the corresponding phase
space. lIts purpose is to obtain a system description fully equivalent to standard quantum
mechanics having a formal similarity with classical statistical mechanics as far as possible.
For simplicity, we will consider that the finite-dimensional space describes an angular

momentuny. A suitable phase space is formed by two conjugate observables on the Hilbert
spaceH, with dimensiond = 2j + 1, j = 1/2, 1 .... As first variable we choose one
of the Cartesian components gf j, for instance. Its eigenvectors and eigenvalues are (in
unitsh = 1)

Jolj,m) =m|j, m) m=—j,—j+1,...,7—1j. (2.1)
Its canonically conjugate variable will be the azimuthal angle: arg(j, +i;,) described

in quantum terms by the unitary operatBrexponential ing [11] with eigenvectors and
eigenvalues

Elj, ¢5) = €], ¢5) (2.2)
where

|j, b5) e "% j, m) (2.3)

1 J
T V2i+1 1m;,~
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and
2

o= 2j + 1
For the sake of symmetry betwegnand ¢ the following unitary operato# can be
defined

s=—j,—j+L....j—1] (2.4)

F = d@/Qj+1)j: (2.5)
The operator€ and F satisfy [11,12]

which expresses a proper commutation relation betweamd¢ in the Weyl form, so they
can be considered as conjugate variables. A discrete and finite phase space can be formed
by the set of(2j + 1)? points {x, ¢,) which we will denote by, s) for simplicity.

In the appendix we recall properties for the Wigner function dictated by the equivalence
with the Hilbert space description, its statistical interpretation and proper behaviour under
transformations [1,5, 7]. Next we study how these properties delimit the correspondence.

By linearity, we may assume that the correspondence between funéip@s, s) and
operatorsA is performed by a family of2j + 1)? operatorsA(m, s) (operator kernel or
phase points operators) in the form

Wa(m, s) = tr[AA(m, s)]. 2.7)

Next we determine the requirements thatm, s) should fulfill in order to guarantee the
properties of the Wigner function listed in the appendix.

Property (A.1) gives that ifA #£ 0 thenW, = 0 so if A # B then W, # Wy and
different operators must have different Wigner functions. By suitably applying (A.1) and
(2.7) it can be shown that it is possible to invert (2.7) in the form

1

J
A= 51 > Walm.s)A(m,s). (2.8)

m,s=—j

According to this inverse relation, the familk(m, s) must be a basis of operators and,
since its number i$2j + 1)2, they must be linearly independent. This means that different
functions will give different operators by relation (2.8). Using (2.8) with= A(m/, s') it
follows from their linear independence that

tr[A(m’, s A(m, s)] = (2] + D8ymSs.5- (2.9)

Vice versa this orthogonality relation accounts for the inversion formula (2.8) and the
tracial property (A.1) simultaneously. As a bonus we have obtained that the correspondence
A < W, is one to one on both directions as a consequence of the number of phase-space
points. In other words, if a one-to-one correspondence is required the number of phase-space
points must b&2;j + 1)2.

The reality condition (A.2) means that the operator kernel must be Hermitian

Af(m, s) = A@m, s). (2.10)
Proper marginal distributions (A.3) lead to
1 J
T :Z_] Alm,s) = |j,m){j, m|
o (2.11)
1 J

571 D Al s) = 1.4 bl

m=—j
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Suitable transformation under translations (A.5) gives the condition

FYEMA([m + K11, [[s + €I EF F1* = A(m, 5) (2.12)
where [n]] is equal to m modulus 2 + 1, being [z]] € [—j,j]l. The parity
transformation (A.7) and Fourier transformation (A.9) lead to

PA(—m, —s)P = A(m, s) (2.13)
and

T'A(=s,m)T = A(m, s). (2.14)
Finally the conjugations (A.10) and (A.11) impose that

(jm'|A(m, =) j,m")" = (j,m'|A(m, 5)|j, m")

(j7 ¢S/|A(_m7 S)|j, ¢S”>* = (J7 ¢S/|A(ma S)'j’ ¢S”)'

At this stage it is not yet granted that all conditions can be satisfied simultaneously
nor whether they define the correspondence uniquely. These points will be answered after
finding solutions for these equations. We will follow a constructive method starting with
the most general operator kernel then imposing the properties (2.9)—(2.15).

To this end, we expresa(m, s) in an operator basis. The* F¢ basis is a convenient
one so we will consider

A(m,s) =Y Ape(m, s)E*F* (2.16)
k.l

(2.15)

where A, ,(m, s) are undetermined coefficients depending @ns(). In this expression the
range of variation ok and? is

k=ko ko+1, ....,ko+2j = {ko}

£=140g, Lo+ 1, ...,00+2j = {£o}
wherekq and £ are arbitrary integers. These operatéfsF¢ are orthonormal with respect
to the trace product

tr[(EX FOY EXFY = tr(FTY EW EFFY) = (2 + DS s (2.18)
wherek, k' € {ko} and?, ¢’ € {£o}. They are linearly independent and complete because its

number matches the dimension of the algebra of operators actitffy.on
We start with translations (2.12) which give the equality

(2.17)

3 Acelm + KT [[s + €]]) €@/ @HEDEAD ghpt = N Ay ((m, 5) E*F* (2.19)
k,t k,t
leading to

Ago(m, s) = —i(Zﬂ/(z.i+1))(ks+€m)Ake (2.20)

where A, , no longer depend om ands.
To impose the orthogonality (2.9) we assume momentarily the reality (2.10) and with
the help of (2.18) we arrive at

Z A/f,z (m/’ S/)Ak,f(mv S) = 8s,s’6m,m’- (221)
k,t
Using (2.20) we have
_ 1
C2j+1
wherey, , are undetermined phases.

g (2.22)

AVY)
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Next we consider the reality condition (2.10) which can be written, using the
expressions (2.20), (2.22) and the commutation relation (2.6), as

Z dvee g@r/@j+1)ks+tm) 2/ j+D)ke pik pte _ Z gree @ 1@r/ Qi+ ks ttm) pk pt (2 23)
k.t k.t

We can rearrange the sum on the left-hand side in the following form. Similarly as in (2.12)
and (A.5) [[-]] denotes the integer equal tek modulus J + 1, being [k]] € {ko}. To
eachk, ¢ there corresponds one and only onef]], [[—¢]]. This allows us to rearrange
the left-hand side of (2.23) in the form

3 @i gi@n/ QDM HI- ) G/ @i+ I-AIL -0 =) -]

k.t
= 3 e g i@/ @D kstin) g@n/ @ik gkt (2.24)

kL

wherek = [[—[[—k111] . ¢ = [[—[[—£]]]] have been used and it should be taken into account
that E2/+1 = F2i+l = (—1)%/.

Using this form in (2.23) we obtain a relation between the phases

2

—ke.
2j+1
We continue with the marginal fap in (2.11) which gives

Vit + V=KL = (2.25)

1 J . _ _
S Y Y e GRS R EL 1 ) (. gy (2.26)
(2‘] + 1)2 m=—j k.t
Them sum is
1 & ior@iimm N
T Z e 1@r/Qj+1)tm pt _ el(2ﬂ/(2]+1))jZFe(SL[[O]] = b1 0 (2.27)
m=—j

This gives the equation to be fulfilled as
1
2j+1

D e g GRS R = | ), ¢l (2.28)
k

giving yi oy = 0. Similarly, the marginal forj, gives the conditionyy . = 0.
With respect to the parity transformation (2.13) we have the equality

Z dree d@r/@j+D)ks+em) pik pit _ Z gree @ 1@/ Qj+D)ks+tm) pk b (2.29)
k.l k.l
We can follow the same steps as in the procedure from (2.23) to (2.25) leading to the
condition
VI-KILI-a1 = Vet (2.30)

The Fourier transformation (2.14) gives the equality
Z gt @ i@/ @j+D)(km—ts) o-i(2n/Q2j+1)ke pit pk _ Z g @i@r/@j+1)ks+em) pk gt
kL kL

(2.31)

We can rearrange the left-hand sum as in (2.23) to arrive at

2
Ykt — Ye[[-k]] = mk@ (232)
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Finally, we consider conjugation (2.15) in the phase basis for instance, which gives the
equality

Z g e d@r/ @A Ks—tm) (5 N ERFE G )
k,t
— Z ein,z e*i(Zﬂ/(2j+l))(ks+L'm) <]’ ¢s/|EkFZ|j, ¢S”>. (233)
k,t

The matrix element we need in this equation is

(j, b |EXF 1 j, pyr) = €49 (j, byl f, dyr—e). (2.34)

The scalar product on the right-hand side is proportional to the Kroneckeradglia ,y,
so the equality to be fulfilled is

Z e s @/ Cj+Dk(s=s") — Z vl - @ 1@/ @j+D)k(s—s") (2.35)
% k

which leads to

Yi,e + Vi-kq,¢ = 0. (2.36)
Similarly, the conjugation in thg, basis gives

Ve + Ve = 0. (2.37)

For the sake of clarity we can summarize the conclusions obtained so far. The operator
kernel must have the form
1

A(m,s) = 211

Z dree @ 1@/ @j+1) ks +tm) pk 2t (2.38)
k.l

where the phaseg. , must satisfy the equations

2

AT = k£ realit 2.3%

Vit + VIi-aLI-e] 2 +1 y (2.3%)
Ykt = VI[-KLI-2] inversion (2.39)
Yk [0 = YIo]l.¢ = 0 marginals (23@

2

- = ———k{L Fourier 2.39
Vi, e — Ve [[—k]] 2i+1 ( )
Yke + Vi—k,e =0 Yeo + Veq-g =0 conjugation (2.39

where a moduluss2 for y, , must be understood throughout.

It can be easily seen that it is always possible to solvVeX3—(2.39%) simultaneously.
This proves that it is possible to establish a one-to-one correspondénge Wy
guaranteeing the statistical interpretation of this phase-space formalism, its equivalence
with Hilbert space quantum mechanics and basic transformation laws. No distinction has
been made between even and odd dimension so no enlargement of the phase space is needed
for the fulfillment of these basic properties.

The study of the possible fulfillment of conditions32d) and (23%) explicitly involves
the operations [Fk]], [[—¢]] which have a special feature for even dimension as we shall
see. For this reason it is convenient to split the joint procedure followed up to here.
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2.1. Odd dimension

When 2j + 1 is odd (j integer) we have a simple choice for the set of integées
and {¢o} which is ko,%o = —j sok,t = —j,—j +1,...,j, and we have simply
[[—k]] = —k,[[—¢€]] = —¢ for all k,¢. The case withj = 2 is illustrated in figure 1.
Conditions (239%) and (23%) lead to an expression fox. , in the form

b1
= ——kt 2.40
Vk.t 2i+1 + &k ¢ ( )

where ¢, can be 0 andr only. Then we haves,, = 4e,, modulus Z and the
conditions (2.39) for, , become equations fa, , that can be written in the form

E_k,—t = €k (2.419)
ero=¢0=0 (2.4D)
E0—k, = k.t (2.4Xc)
Ek,—t = Ep e E—kt = Ekye- (2.41d)

These conditions mean that, takes the same value (0 @) on thosek, ¢ points connected
by the corresponding transformations on the lattice; these are, inversion.@a), /2
rotation (241c) and reflections (21d). We can finde, , values satisfying simultaneously
all conditions (2.41) simply by assigning the same value & do thek, ¢ points connected
with a given one by this set of operations, giving

Skt =E_k—t =E_kt =Ef—¢ =8k =Eyr =6k =8¢k =0T (2.42)

for eachk, ¢. By condition (241b) this value must be 0 if these points lie on the axes.
Otherwise it can be 0 ar as well.

Figure 1. lllustration of the range of variation df, ¢ for j = 2 whenkg = ¢p = —j = —2.

The conclusion is that for odd dimension it is possible to define a Wigner—Weyl
correspondence with all properties listed in the appendix in more than one way.

Next we study whether it is possible to express the operator kernel in other forms
equivalent to (2.38). Sinca ands are always integers, the operator kernel can be written
in the form

A(m,s) = D(m, s)A(0,0)D(m,s) = E"F*A(0,0)FSE™ (2.43)
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where D(m, s) is in equation (A.4) and

Z gene dm/ @Ik phpt (2.44)

k.t

It is known that for the Wigner function for position and linear momentum, the operator
kernel is the displaced parity operator [2]. The question is whether there is a chaigce of
satisfying (2.41) such thaa (0, 0) is the parity operato® in (A.6). To this end we will
expressP in the EXF* basis

A(0’0):2]'+1

P= § P EFF* Py = tr(F E™ p). 2.45
2 %, € .t 2 +1 ( ) ( )
The trace gives
J A 1 A A
P, = e @U@ (i iy = e imkue g(r/(2j+1)kt 2 46
k.6 2j—|—1§. (J, &=slJ, bsye) 241 (2.46)

s=—j
where i, is an integer such thats2= —¢ + u,(2j + 1) and it can be seen that for each
value of ¢ this relation is fulfilled by one and only one integee [—, j]. Since 2 + 1

is odd, u, is odd (even) whed is odd (even) and then

1 . .
P = dike d@/@j+1kt pk pe 2.47
2j+1 ; ( )
wheren, , = —mku, (Modulus Zr) are given by
0 whenk and/or¢ are even
Nke = (2.48)

whenk and ¢ are odd.

We can see tha, , satisfy (2.41) because these relations never iniand ¢ odd with
the other possibilities. If we take,, = n, as a particular solution of (2.41) we get
A(0, 0) = P and the operator kernel becomes

A(m, s) = D(m,s)PD'(m,s) = D(2m, 25) P (2.49)

which are formally the same expressions valid for the ordinary Wigner function [2]. The
first one can be used to obtain the following expression in| the,) basis:
J .
Am,s)y =Y " |j, ¢+ ), b5 — il (2.50)
r=—j
This shows that after the particular choice (2.48) §py we recover a Wigner-Weyl
formalism valid only for odd dimension previously introduced [8]. We have found some of
its properties and also that these forms (2.49) and (2.50) correspond to a particular solution
for e, in (2.41). This means that there are other admissible choices, all of them having
the same set of properties we have examined.

2.2. Even dimension
Here again, in order to simplify the examination of conditions (2.39), we will make a
definite choice for the rangd&o} and{¢o}. When 2 + 1 is even § half integer) we have
that (2j — 1)/2 is integer. We will takeig = ¢9 = —(2j — 1)/2 which gives the following
ranges of variation

_2j—-1 2j-1 2j—-1 2j+1

k,t = > 5 +1,..., > T o

which are illustrated in figure 2 fof = 5/2.

(2.51)
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The special feature of even dimension is that there are alway% ea¢[0]] and one
£ # [[0]] such that [-k]] = &, [[—¢]] = ¢. This occurs fork, £ equal to(2j + 1)/2. For
the remainder ok, ¢ we have [[k]] = —k, [[—¢]] = —¢ as in the case of odd dimension.
In figure 2 we have singled out the point= ¢ = (2j + 1)/2 as the point B the set ok, ¢
points withk or ¢ equal to(2j + 1)/2 as the set Rand the remainder as the set Rhis is
advantageous because the operationr][, [[—¢]] and the conditions (2.39) preserve this
splitting and do not relate elements from different sets.

R, 14 Rs

Figure 2. Range of variation ok, ¢ for j = 5/2 whenky = o = —(2j — 1)/2 = —2. The
pointk = ¢ = (2j + 1)/2 = 3 is the point B; points withk or ¢ equal to 3 form the set R
while the remainder of points which hakeand ¢ different from 3 form the set R

Within R; the conditions (2.39) behave exactly as in the case of odd dimension just
studied, so all of them can be satisfied simultaneously in more than one way.

The situation is different within the other regions. In first place we can show tt88{2
is not compatible with (B%) and (23%). For points B and R we have from (23%)

2y2j+1/2.6 = 2Vk,2j+12 =0 (2.52)
whereas from (B8%) and (239%)

2y2j+1)/2¢ = e 2Vk,2j+n/2 = Tk (2.53)

so they cannot be satisfied simultaneously Koor ¢ odd. For any dimension there are
alwaysk and ¢ odd, so the conjugation property is excluded. It can be seen tt&8b]2
can be derived form (3%), so conjugation is not compatible with reality which appears
to be a more fundamental property.

Next we examine properties .@a)—(2.39%) by expressingy; . in the form (2.40).
Concerning the point no conditions one;11)/2,2j+1)2 €merge from (B%)—(2.39%),
while (2.39) leads to

2j+1

T

0 (2.54)
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which can be satisfied only if 2+ 1 = 4, 8,12, .... Concerning points within Rwe have
the following conditions or¥y ,

E@2j+1/2.~t = E@j+1/2.0 T 7L E_k,j+1)/2 = k. 2j+n2 + Tk (2.5%)
£2j+1)/2.0 = €0,2j+1/2 =0 (2.5%)
E0,2j+D/2 = €2j+1/2.¢ T il Ek,2j+1)/2 = €2j+1)/2,—k- (2.5%)

These conditions are compatible and can be solved simultaneously in more than one
way. They mix EQj+D) /2.1 En,2j+1)/2s E2j+1)/2,—u and E_ 1, (2j+1)/2- When,u is even,
equations (2.55) give that all of them are equal

EQj+D/2n = Eun,2j+D)/2 = EQj+1)/2—n = E—p,@j+1/2 = 0, T (2.56)

being 0 ifx = 0 and O orzr are possible ifu ## 0. Whenu is odd we have

Eu,j+1)/2 = EQj+D/2—n = T + E—p,@j+1/2 = T + €2j+1)/2.u (2.57)

and also in this case there is more than one solution.

Summarizing, for dimensionsj2+ 1 = 4,8,12,...(j = 3/2,7/2,11/2,...), it
is possible to establish a one-to-one correspondence> W, with the properties of
traciality, reality, proper marginals and suitable transformation laws under translations,
parity and Fourier transforms, but not under conjugation. Concerning dimensjo#s 2
1 =26,10,...(j = 1/2,5/2,9/2,...), we have all the properties except suitable
transformation laws under Fourier transform and conjugation. In both cases the solution is
not unique.

Finally, we could ask whether there is a particularsgetproviding expressions similar
to (2.49) or (2.50). If it were possible to express the operator kernel as

A(m,s) = U(m, s)PU'(m, s5) (2.58)
for some unitary operator& (m, s) we would have
J
trA(m,s) =ttP =Y (j.—m|j.m)=0. (2.59)
m=—j

This would lead tow,(m, s) = 0, wherel is the identity, which is in contradiction with
(A.D).
We could try the possibility of having the operator kernel in the form

A(m,s) =U(m,s)P (2.60)
for some unitary operator§ (m, s). Using the reality condition we would have
A%(m,s) = PU'(m, s)U(m, s)P =1 (2.61)

and the eigenvalues af(m, s) should bet1. For even dimension, this is in contradiction
with trA(m, s) = 1 which follows from (A.3) and (2.8).

Therefore, (2.49) and (2.50) are excluded for even dimension. This does not mean that
the Wigner function lacks desirable properties as we have demonstrated before.

3. Number difference and phase difference for a two-mode field

We have found the preceding section illustrative to identify the finite-dimensional space
as describing an angular momentum. This choice is only a matter of convenience and the
formalism developed can be applied to any other situation describable by a finite-dimensional
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space. In this section we will see that this formalism provides a phase-space description of
number and phase difference of a two-mode field.

The Hilbert space of a two-mode fieldh ® H», can be split as a direct sum of subspaces
Hy with fixed total photon numbeN

oo
Hy® Hy =Y _ Hy. (3.1)
N=0
All subspaced{y are finite-dimensional with dimensiad+1, N =0, 1, .. ., and therefore
isomorphic to the spaceH; or preceding sections witlh = N/2. We can perform this
equivalence by means of the following relation between photon number $tat@s) and
angular momentum states

|n1=N—n,n2=n)<—>|j=%N,m=%N—n) 3.2)

wheren = 0,1,..., N. This relation allows us to rename the variables used in section 2
according to their meaning in this different context.

According to (3.2) we have that is half of the number differencéi; — ny)/2. The
azimuthal anglep will correspond to the phase difference which is the variable canonically
conjugate to half of the photon number difference. The operator

Ep=) Ej3 (3.3)
N=0

where E{}) < E with j = N/2, is precisely a previously introduced unitary operator
describing the exponential of the phase difference [13].

After all these identifications the phase-space formalism developed in section 2 provides
in this context a phase-space description of the number difference and phase difference of a
two-mode field. The correspondence between operators and functions is performed by the
operator kernel\"Y) (m, ¢,) defined asA™Y) (m, ¢;) <> A(m, ¢;) with j = N /2.

In this case the associated phase space is discrete but no longer finite, being formed by
all pairs (n, ¢,) for all possible values oW. In fact, these definitions provide a joint phase-
space description of the total number, number difference and phase differénee ;)
or, equivalently, photon numbers and phase differengent, ¢;).

This is not a complete phase-space formalism for a two-mode field because number
difference and phase difference are not a complete set of variables, even if we include the
total number. It can be used only on situations involving these variables or any function
of them, which means operators commuting with the total photon number. Accordingly,
this phase-space description can be interpreted as a marginal quasidistribution of a complete
Wigner function. Such a definition is out of the scope of this work since it would go beyond
finite-dimensional spaces.

There are Wigner functions adapted to absolute number and phase [3,4]. Their joint
definition for a two-mode field provides another phase-space formalism for number and
phase difference by means of the corresponding marginal distribution for these variables. We
devote the next section to this procedure and its comparison with the one followed up to here.

4. Wigner function for absolute and difference number and phase variables

Wigner functions for one-mode fields defined in terms of the number and phase instead
of quadratures have been studied [3,4]. The joint definition for a two-mode field can be
then handled to derive, as a marginal distribution, a Wigner function for number and phase
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differences. This marginal distribution establishes a correspondence between functions and
operators acting on finite-dimensional spaces, providing in fact a formalism alternative to
the one followed throughout this work. Its derivation and its properties are addressed in
this section. First, we will consider the Wigner function introduced in [3] and afterwards a
closely related definition contained in [4].

The Wigner correspondencé <« Wy (71, ¢) [3] for the numbern and phasep is
expressible by means of an operator kerét, ¢) in the form

Wa(il, @) = t[AA (7, ¢)] A =2nZ/ dp Wa(it, @)A1, ). (4.1)
n=0

In this definition the number variable takes integer as well as half integer values

i=03132.. (4.2)
and this is the range of variation (step 1/2) of the previous sum. On the otherdéaices
any value in a # interval. The operator kernel is

~ 1 ! A2y’ ’ ’
A(n,¢)=§fd<pe2"”I<p+w><<p—wl 4.3)
where
1 &
=_——_ Y dmw 4.4
o) @; In) (4.4)

are the Susskind-Glogower phase states [14].
The joint Wigner function for a two-mode field will be given by

Wa(iia, iz, 91, 92) = [AA (1, 1) A(712, ¢2)]

- . N . 4.5
A=@r)? )] /d‘ﬂldszA(nl,nza<P1,<P2)A(n1,<.01)A(n2,</>2)- (4.5

ﬁl,ﬁ2=0
Since here we are interested only in the number and phase differences, we will consider
the functions

W (Gin, iz, ) = / Ao WaGin, iz 0. 9 + ¢) = WAAGL 72 )] (4.6)

where

Ais.iiz#) = [ GpAGis. MGz g+ 0) @7
The explicit form for the operator kernel is

~ ~ l / imao’ / /

MG iia #) = 5 [ 66/ EMIN. G+ 41 (N6~ | 4.8)

where the phase difference state
1 < 5

N, ) = — g iW/Zme Ny op 4.9

V) = —== ; | ) (4.9)
lies in the finite-dimensional spadéy,
represents the total photon number and

m= 3N —ii, = 3(iiy — fip) (4.11)

represents half of the number difference.
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We can see that(ny, 712, ¢) commutes with the total photon number and (4.8) is an
operator acting exclusively oHy. SinceN is integer,n; andn, must be both integers or
half integers simultaneously. Otherwiag(ii,, 712, ¢) vanish. From now on we use these
parametersV andm renaming the operator kernel and the Wigner function as

A(in, iz, §) = AN (71, ¢) Waliis, iz, §) = WY (i, ¢) (4.12)
and
WMo, ) = tr[AADN) (i, ¢)]. (4.13)

Relations (4.13), (4.12) and (4.8) provide a phase-space formalism for operators acting
on finite-dimensional spacedy of arbitrary dimensionV + 1, which can be compared
with the procedure we have developed in this paper. The phase space is differert. The
variable can take any value within & 2nterval. Concerningp, for a given value otV we
have from (4.10) that, can take valueg, = 0,1/2,1,3/2,..., N, and therviz can take
the 2V + 1 values

m=—-iN,—3N+3 -IN+1 ... IN-1LIN-3 IN (4.14)
which are all the integers and half integers frenv /2 to N/2. These are the ranges of
variation of these quantities whenever they appear.

From now we concentrate on arfjjy and on operatord and B acting exclusively on

it, A, B: Hy — Hy. Next we study the properties of this phase-space formalism. First,
we have that (4.13) can be inverted,

A=27 Z/ dp WV (i, o) AN (in, p) (4.15)

as can be seen by direct calculation. From this relation the traciality
tr(AB) =21 ) / dp W (i, o)WY (i, p) (4.16)

can be proved.
This equation guarantees thatAf B then W " = w{\) so different operators have

different Wigner functions. However, there are maW)E(V) (m, ¢) compatible with (4.15).
This is because there are functiowd™ (i, ¢) # 0 such that

> f dp W™ G, ) AM (1, ¢) = 0 (4.17)

which can be added to arW/gN)(nﬁ, ¢). These functions are those satisfying

/ dp W (# ¢) gem=m) _ @ (4.18)

for everym,m' = -N/2,—-N/2+1,...,N/2— 1, N/2.
The form (4.8) ensures that™) (i, ¢) = AN (i, ¢), which is the property of reality.
Concerning marginals, for the phase difference we have

2 A0, ¢) = IN, $)(N, ¢l (4.19)
whereas for thz number difference

/ 6o AN G, ) = {l)N,nE}(N, | i:)téé\ivjsnz integer 4.20)
where|N, 7it) = |ny = N + 7, ny = 3N — ).



1436 A Luis and J Paha

It transforms properly under any phase-difference shift,
AN (i, ¢ + 0) €7 = AN (i, p) (4.21)

where j, represents here half of the number-difference operator. It behaves properly under
the parity transformation

PAM (=i, —p)P = AN (171, ¢) (4.22)
and also under conjugation

(n1, na| AN (i, @)y, ny)* = (n1, nal AN (i, @)y, n)

(N, ¢'|AN (=, ¢)IN, ¢")* = (N, ¢'|AN (7, p)|N., ¢").

All this is valid without any difference between even and odd dimensions. In comparison
with the formalism studied in the preceding sections, the approach developed here differs
mainly in the underlying phase space which accounts for the differences we provide in detail
in the following. Concerning the number difference, we have here an enlarged phase space
(2N + 1 values instead oN + 1) where there are always values which are not in the
spectrum of half of the number difference withifiy. These additional values disappear
when considering the corresponding marginal distribution (4.20). With respect to the phase
difference¢, any value in a 2 interval is allowed for every subspadéy in front of the
N + 1 values of the preceding sections. This allows a different transformation law in (4.21)
since the phase shift can take any value. On the other hand, the marginal for the phase
difference does not define an operator in the usual sense (orthogonal projectors or projection
measure) but a non-orthogonal positive operator measure. Concerning unitary translations
of number difference and Fourier transforms, there seem to be no suitable transformation
laws because of the different form of the phase space and the dissimilarity between number
difference and phase difference. Finally, another consequence of this phase space is that
the correspondencé <> W." is not one to one.

In relation to the continuous range of variation fgr we may think that it is
overcomplete in order to describe a variable in a finite-dimensional space where we would
expect a discrete character. In fact, we can show that a finite numbevaifies are enough
to know the Wigner function at any other phase-difference point. This is because we have

(4.23)

IN, @) N, ¢l =) CGE $)IN, :)(N, ¢l (4.24)
where
N -~
CG,p) = g!@s=e) 4.25
3. ) 2N+1e=Z—N (4.25)
¢ always being integer, and
3 4 N N 1 N N N 1N
;= 5 §=——,—— 4+, ——+1,...,=2-1,=-2,= 4.26
“=ony1 T2ty t 2 2 272 (4.26)

so the ranges of variation @i ands are everywhere the same. Equation (4.24) allows us
to write the operator kernel as

AN G, ¢) =" CE AN (i, §) (4.27)

and similarly for the Wigner function
Wi, ¢) =Y CE oW (i, §o). (4.28)
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The knowledge of the Wigner function on the/2+ 1 phase-difference poin gives its
value at any othe¢ point. Let us note that the following relations hold:

27)2 ~ ~
= Z(Nle S Wi, g AN i, )
(21)?
2N +1

(4.29)
tr(AB) =

Y Wi, gy Wi (o, ¢s).

This shows an effective discreteness ¢prthe new phase space being formed by the
(2N + 1)? points @, ¢5). In comparison with the Wigner function studied in section 2, this
corresponds to a phase space enlarged equally on both variables. This makes this effective
formalism similar, although not equal, to a Wigner function defined directly on similarly
enlarged phase spaces [9].

Finally, let us consider along the same lines what occurs when we adopt a different
definition of the Wigner function for number and phase like that contained in [4]. Its
operator kernel for a one-mode field is given by

1 . o
A(n,9) =AM, ¢) +An—1/2,¢) = Z/ dp' e 2" (1+€")|p + ¢} 9 — ¢/| (4.30)

wheren = 0,1, 2,... is always an integer. The correspondence between operators and
functions is also of the form (4.1), replaciagii, ¢) by A’(n, ¢) andi by n when necessary.
The main difference between these two approaches is that the last one is defined exclusively
on integer values for the number variable which are the spectrum of the number operator.
In principle, we could expect that this difference may affect the range of variation of the
number difference by removing th& values which are not in the spectrum of half of the
number difference.

If we replaceA (i, ¢) by A’(n, ¢) in (4.7) we arrive at

A'(n1,n2, ¢) = A(ny, no, §) + A(ny — 1/2,n, — 1/2, ) (4.31)

where the right-hand side terms are given by (4.8). Using parametrization (4.12),

A(ny, na, ¢) = A (LGz ¢) A= (% ¢) . (4.32)

The first kernel is acting o, ,, while the second is acting oH,,,—1.

Next we proceed to extract from (4.32) the operator kernél (771, ¢) acting just on
the finite-dimensional subspac#s,. We have two kinds of contributions. One comes from
the first term in (4.31) and (4.32) when + n, = N. In this case, for fixedv we have
thatn, can take the values, =0, 1, ..., N, so half of the number differenogé takes the
N +1valuesn = -N/2,—-N/2+1,...,N/2—1, N/2, which is its spectrum withitf .
The other contribution comes from the second operator kernel in (4.31) and (4.32) when
ni1+n,— 1= N. In this casen, can take the values, = 1,..., N, since it can be
seen in (4.3) than(—1/2, ¢) = 0. Half the number differencé: can take thev values
m=-N/241/2,—-N/2+3/2,...,N/2—3/2, N/2—1/2, which are out of its spectrum
within Hy.

Then we have found that for a given value Mfthere are & + 1 possible values for
half of the number difference which are the same as in (4.14).

Therefore A™M (i1, ¢) = A™ (i, ¢) and both formalisms provide the same Wigner
function for a finite-dimensional space, the same phase spagg),(and so they have the
same properties, despite the fact that their starting points are different.
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The origin of this coincidence with the appearancenofalues that we did not expect
can be ascribed to the behaviour of the total photon number variable in this formalism.
We have in (4.32) that to the valug + n, there are contributions from the subspaces
H, +n, and H,,,,—1, Since the corresponding operator kernel is acting on both subspaces
simultaneously. Equivalently, as we have just shown, states defined withirgive
contributions on the values, + n, = N andni +n, = N + 1. These last contributions
disappear if we integrate the phase difference and we always recover the correct marginal
distribution.

This can be illustrated by considering the most general one-photon field state with an
expression in the number basig) = «|1, 0) + 8|0, 1) whose complete Wigner function is

/ 1 o
W, (n1, n2, @1, ¢2) = 2072 [l 280,,180,,0 + 1B1%8n,.000,1 + " BEWTT28, 18,1

+ap* e s, 18,,1]. (4.33)

A contribution withny +n, = 2 appears and half of the number difference takes the values

0, +1/2 instead of just:1/2 which are the allowed values for a one-photon state. In fact,

all the phase-difference information is conveyed by the phase-space poinis withh = 2.

To some extent, the enlargement of the phase space that this formalism tries to avoid is not
completely removed and effectively persists for the number difference.

Finally, let us note that there is a simple practical scheme for determining from
measurement all these Wigner functions. They are the mean values of operators commuting
with the total photon number. It has been shown that the whole statistics of operators
commuting with the total photon number can be derived from photon-number measurements
after an unbalanced eight-port homodyne detector when two of the input ports are in vacuum
[15]. In particular, this allows one to extract the mean values of the operator kernels of this
and the preceding section from the statistics of such a homodyne detection.

5. Conclusions

We have analysed the definition of a Wigner—Weyl correspondence for systems described
by finite-dimensional Hilbert spaces. As a phase space we have considered that formed
by the spectrum of two conjugate variables. Such a phase space is, therefore, finite and
discrete withd? points if the Hilbert space has dimensidn

Although the phase space as a classical object would demand a continuous range of
variation, the statistical interpretation allows us to expect marginal distributions strongly
related to the probability distribution of observables. However, their spectrum is necessarily
discrete and finite, in contrast with the case for position and linear momentum where
any value is allowed. We can regard a discrete and finite phase space as another non-
classical feature dictated by the quantum nature of the system described, as is for instance
the lack of positiveness of the Wigner function. The correct classical limit is granted
because the number of phase points grows witind in the limit of highd they become a
continuum for all practical purposes. Moreover, a phase space witdjysiints embodies
straightforwardly a one-to-one relation between operators and functions in both senses of
the correspondence as we have shown.

We have constructed from basic principles the most general one-to-one correspondence
between operators and functions compatible with its quantum statistical content and
desirable properties under phase-space transformations. This possibility was known for
odd dimension. Here we have found a set of properties that it fulfills. For even dimension
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we have shown that it is possible to guarantee basic properties using a phase space of just
d? points. Therefore, its enlargement by inserting additional points is not necessary.

For Cartesian variables the properties we have discussed are sufficient to define the
correspondence uniquely. We have found that this is not the case for finite dimension.
The generality of the constructive method followed here has allowed us to find the class
of Wigner—Weyl correspondences satisfying these properties. In particular, this shows that
the previously introduced Wigner function for oddis not the only possibility having
such properties. We think that this result could be interesting in relation to the study of
the basic properties fulfilled by Wigner functions. Also, this freedom makes room for the
fulfillment of further specific requirements which might be necessary for the application of
this formalism to other particular situations.

We have found that some familiar forms of expressing the Wigner—Weyl correspondence
for Cartesian variables, which are valid for odd are not possible for even dimension.
However, this fact is no intimately connected with the fulfillment of some basic properties,
as the odd/ case illustrates.

Among the possible conjugate variables describable by finite-dimensional spaces we
have studied the number difference and phase difference for a two-mode field. We have
compared our approach with the marginal distribution for these variables arising from a
Wigner function for absolute numbers and phases. We have found that two different
formalisms give the same correspondence. The phase space that this procedure defines
is discrete and enlarged for the number difference and continuous for the phase difference.
However, this last range of variation is not completely effective in the sense that having a
finite number of points is enough to know the Wigner function at any other phase-difference
point.

Finally, we find relevant the possibility of defining a well behaved phase-space
formalism, which naturally embodies the description of variables like azimuthal angle or
phase difference by operators, in accordance with the usual description of variables in
guantum mechanics.
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Appendix

In this appendix we briefly list the properties required for the Wigner function.
The correspondencé < W, should be a one-to-one linear map in both directions.
Mean values should be given by averages on phase space

1 J
tr(AB):m Z Wa(m, s)Wg(m, s). (A1)

m,s=—j

For the sake of conciseness we will refer to this property as traciality.
To Hermitian operators (in particular, density matrices) there should correspond real
functions andvice versa

Wii(m,s) = Wa(m,s). (A.2)
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Marginal distributions should give the probability distributions forand ¢

1 J
51 > Walm, ) = (j, m|Alj, m)

. s:;, (A.3)
571 D Walm,s) = (j, 4,1Alj, b).

m=—j

According to the commutation relation (2.6) the combinatiditg= ¢, for integersk
and/, represent displacements along theand¢ variables, becoming a discrete and finite
equivalent of the displacement operator [2] of position and linear momentum. This analogy
can be made more precise by adding a phase factor [10-12]

D(k, ) = e”'*/@IFDk gk pit, (A.4)
Under translations the Wigner function should transform by the translation of its arguments

Wow,eaptw,e([[m + kI, [[s + €]]) = Wa(m, s) (A.5)

where [jn]] is equal tom modulus 2 + 1 and [jn]] € [—j, j]. To some extent this
preciseness is not necessary for the angular part sirwep, are naturally 2 + 1 or 2t
periodic, respectively. This is not the case #oybut a cyclic behaviour for this part of the
transformation is dictated by the possibility of having an operator for the azimuthal angle
[11].

Another useful transformation is given by the parity operator

J J
P=>"1jip-irdsl= Y lj,—m)(j,m| (A.6)

s=—]j m=—j

which changes the sign @f and j,. From a phase-space perspective, this is an inversion
or ax rotation as well so we can require

Wpapi(—m, —s) = Wu(m, s). (A.7)

Another transformation is based on the Fourier relation betweenjthe and|j, ¢,)
states. The Fourier transform unitary operator

Jj Jj
T= 3 li-mml =3 1j=m)(j. él (A8)

m=—j m=—j
transformsp into j, and j, into —¢, being ar /2 rotation on phase space, so we can impose
WTAT%(_S, m) = WA (m7 S)- (Ag)

Finally, we can add two more properties arising from the complex conjugatioA; If
is the operator given by the complex conjugation4ofn the j, basis,(J, m/|A;|j, m) =
(j,m'|Alj, m)*, we may impose the transformation law

Wi (m, —s) = Wa(m, s) (A.10)
where the conjugation of the Wigner function follows from the anti-unitarity of the
transformation, so the equality(#; B') = tr(AB)* holds when using (A.1). Similarly,

if A} results from conjugation in the basis, (j, s |A}|)j. ¢s) = (j. ¢s|Alj. ¢5)*, we can
impose the transformation

Wz;(—m, s) = Wa(m,s). (A.11)
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